[Molecular mechanisms in Alzheimer's disease].

نویسندگان

  • F Coria
  • I Rubio
چکیده

15.1 Introduction Alzheimer's disease (AD), a progressive neurovegetative disorder of the central nervous system and a leading cause of dementia, is partially caused by genetic changes. The molecular mechanisms and hypothesis of AD is very complex. The key event leading to AD appears to be the formation of a peptide known as amyloid beta (Aß) which clusters into amyloid plaques or senile plaque on blood vessels and on the outside surface of neurons of the brain, which ultimately leads to the killing of neuron. Amyloid cascade of events in AD would be: Aß formation → amyloid plaques → neuron death → dementia The amyloid ß-peptide is created by enzyme clipping of the neuron membrane protein known as amyloid precursor protein (APP). Enzymes can clip APP in the ways that do not result in amyloid ß formation. Moreover, there are two forms of amyloid ß-peptide, one with 40 and other with 42 aminoacids. The 42 amino acid peptide is more hydrophobic than that with 40. Following amyloid plaque formation, two processes play an important role in causing the death of neurons: inflammation and neurofobrillary tangles. Two major types of brain cells that participate in immune and inflammatory process are astrocytes and microglia. The number of astrocytes seems to be enlarged in AD and activated to produce prostaglandin leading to arachidonic acid mediated inflamation. Furthermore, activated microglial cells produce free radicals and this mechanism leads to the death of neurons. Neurons can be very large and nutrient substances as well as cell regulation components are transported along microtubules. Structural integrity of microtubules is maintained by tau protein. In AD, tau protein loses its capacity to bind to microtubules but binds to each other forming paired helical filaments forming knots known as neurofibrillary tangles (NFTs) which further cause microtubule death. With these facts in mind, the second part of the amyloid cascade would be: APP→ Aß42 → amyloid plaque → inflammation NFTs → neuron death. The formation of Aß42 from APP is regulated by secretases – two enzymes that compete to cleave APP and consequently cause formation of insoluble amyloid plaques. a-secretase cleaves APP in a way in which Aß42 is not formed. On the contrary, ß-secretase and, in the next step, ?-secretase cleaves APP forming either 40 aminoacid amyloid protein which is soluble, or 42 aminoacid amyloid peptide which clumps together forming insoluble amyloid plaques. Familial AD is genetically heterogeneous and appears …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of microRNA as a biomarker in Alzheimer’s disease

Introduction: MicroRNAs are small, non-coding, and protected RNA molecules that regulate gene expression after transcription by mRNA degradation or inhibition of protein synthesis. The function of these molecules is critical to many cellular processes, including growth, development, differentiation, homeostasis, apoptosis, aging, stress resistance. In addition, some diseases including cancer, a...

متن کامل

Alzheimer's Disease: Yesterday, Today, Tomorrow

Alzheimer's disease is the most common and well - known cause of dementia, as a progressive, irreversible brain disorder that affects cognitive function, personality, thought, perception and behaviour. Alzheimer's disease is the fourth leading cause of death in western countries. Interesting to know that this disease was unknown in medical community till 100 years ago and had no name. Dr. Alois...

متن کامل

Molecular mechanisms involved in multidrug resistance in breast cancer therapy

Breast cancer is the most prevalent cancer in women. Chemotherapy is the main strategy in the treatment of this disease especially in the advanced form of the disease. Despite the recent progress in the development of new chemotherapy, the effectiveness of these drugs has dramatically reduced due to multidrug resistance. The phenotype of multidrug resistance (MDR) can occur through different me...

متن کامل

P 62: Markers of Neuroinflammation Related to Alzheimer\'s Disease Pathology in the Elderly

Alzheimer Disease (AD) is a neurodegenerative disorder and the most common form of dementia. Increasing evidence suggests that Alzheimer's disease pathogenesis is not restricted to the neuronal compartment, but includes strong interactions with immunological mechanisms in the brain. In vitro and animal studies have linked neuroinflammation to Alzheimer's disease (AD) pathology. Studies on marke...

متن کامل

The role of genetics in alzheimer’s disease

Alzheimer's disease is a progressive neurological disorder that causes the brain to shrink (atrophy) and brain cells die. Alzheimer's disease is the most common cause of dementia and causes a decrease in thinking skills and social behaviors. Alzheimer's disease is more common in people over 65 years old. The risk of developing Alzheimer's disease and other types of dementia increases with age,...

متن کامل

The recent development in synthesis and pharmacological evaluation of small molecule to treat Alzheimer's diseases: A review

Alzheimer's disease is a neurological disorder in which the death of brain cells causes memory loss and cognitive decline. A neurodegenerative type of dementia, the disease starts mild and gets progressively worse. Like all types of dementia, Alzheimer's is caused by brain cell death. The most common presentation marking Alzheimer's dementia is where symptoms of memory loss are the most promine...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Revista de neurologia

دوره 25 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 1997